计算机辅助诊断肺栓塞

田 媛, 温 佳达, 古 琼芳, 胡 嘉航, 林 宸宇, 张 铮, 杨 冰露, 黎 明
深圳市龙岗区人民医院体检科

摘要


目的:通过人工智能计算机(CAD)辅助诊断肺栓塞。方法:(1)本研究采用回顾性研究,选用2017-2022年龙岗区人民医院可疑肺栓塞患者的肺动脉CT血管造影(Computed Tomography Pulmonary Angiography,CTPA)图像,由两名高年级影像科医师进行阅片审核,最终确诊肺栓塞(Plumonary Embolism,PE)图像,并标注栓子位置。(2)CAD对CTPA图像进行分析判读,确定肺栓塞患者例数,以高资质医师为参考标准,对比CAD诊断PE的灵敏度、特异度、阳性预测值及阴性预测值。结果:高年级影像科医师确诊PE 85人,CAD确诊肺栓塞患者74人,CAD确诊PE的灵敏度87.06%,特异度76.92%,阳性预测值89.16%,阴性预测值73.17%。结论:CAD可辅助医师诊断肺栓塞,灵敏度达87.06%,特异性76.92%,阳性预测值89.16%,阴性预测值73.17%。CAD通过计算辅助诊断肺栓塞。

关键词


肺栓塞;计算机;辅助诊断

全文:

PDF


参考


[1]SILVER D, HUANG A, MADDISON CJ, et al. Mastering the Game of Go with Deep Neural Networks and Tree Search. Nature,2016,529(7587):484-489.

[2]SILVER D, SCHRITTWIESER J, SIMONYAN K,et al. Mastering the Game of Go without Human Knowledge. Nature,2017, 550(7676):354-359.

[3]HE JX, BAXTER SL, XU J, et al. The Practical Implementation of Artificial Intelligence Technologies in Medicine.Nat Med,2019,25(1):30-36.

[4]TAGHANAKI SA, ABHISHEK K, COHEN JP, et al. Deep Semantic Segmentation of Natural and Medical Images: A Review.Artif Intell Rev,2020,54:137-178.

[5]Masutani, Y, MacMahon H., Doi K. Computerized detection of pulmonary embolism in spiral CT angiography based on volumetric image analysis.IEEE Trans. Med,2002,21(12):1517–1523.

[6]Rajan D, Beymer D, Abedin S, Dehghan, E. A pipeline for pulmonary embolism detection using sparsely annotated 3D CT images. Machine Learning for Health Workshop,2020,366:220–232.


Refbacks

  • 当前没有refback。